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Abstract

Visual language models have recently demonstrated enhanced capabilities in visual
reasoning tasks by employing external modules upon language models for visual
language alignment. InstructBLIP uses a Q-Former and a projection layer to
convert input image embeddings into soft visual prompts to enhance the instruction-
following capabilities of large language models (LLMs). Although fine-tuning
InstructBLIP has shown great results in downstream tasks, previous works have
been restrictive, only full fine-tuning the Q-Former, while freezing the LLM. In this
work, we investigate the performance of the PEFT method, LoRA, on both the Q-
Former and the base LLMs, specifically Flan-T5-XL and Vicuna-7B, using visual
reasoning benchmarks ScienceQA and IconQA. We observe that, when the LLM
is frozen, training the Q-Former with LoRA achieves comparable performance
to full fine-tuning using under 2% of the trainable parameters. Furthermore, fine-
tuning the LLM consistently result in better performances than InstructBLIP. Lastly,
applying LoRA to both the LLM and the Q-Former surpasses the performance
of only full fine-tuning the Q-Former while using less than 12% of the trainable
parameters. These results highlight the effectiveness of applying PEFT to visual
language models for visual reasoning tasks. The code is available at https:
//github.com/AttentionX/InstructBLIP_PEFT.

1 Introduction

Pre-trained large language models can be fine-tuned to achieve high performance on many tasks. For
instance, instruction tuning has been proposed to align the model’s responses more closely with human
intentions [} [2]]. This approach is also applicable in multi-modal settings with visual instruction
tuning, that enhances the model’s capabilities to follow instructions for visual question answering
and visual reasoning tasks. LLaVA [3| 4] uses a projection layer to convert the CLIP [5] image
embeddings to the word embedding space of language models, and trains both the projection layer and
the language model. BLIP-2 [6] and InstructBLIP [7]] use a Q-Former for visual-language alignment,
similarly to Perceiver 10 [8]], which extract visual features in a fixed number of learnable embeddings
(32 in BLIP-2). InstructBLIP only fine-tunes the Q-Former and a fully connected projection layer
while freezing the LLM. The Q-Former is especially significant for its role aligning several modalities
with cross-attention and encoding the information in a small number of learnable embeddings. This
multimodal alignment approach has been adopted in several recent studies, including Video-LLaMA
[9] and Qwen-VL [10].
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Figure 1: Applying PEFT to different components in InstructBLIP.

While InstructBLIP and LLaVA achieve competitive performance on several downstream visual
reasoning benchmarks [3l [7], each visual language model has its own limitations. In the case of
LLaVA, full fine-tuning the large language model may be costly, due to the computational memory
required to update billions of parameters. For InstructBLIP, freezing the LLM model may hinder
the model from learning task-specific language understanding and generation abilities. Parameter
efficient fine-tuning (PEFT) can mitigate both problems by fine-tuning large models with much less
computational memory while still maintaining competitive performance [[11} 12} (13} 14} 15/ 116417,
18]]. Although various PEFT methods perform competitively on downstream tasks [13} (19} 20], the
efficacy of PEFT methods, both for visual reasoning tasks and for visual-language alignment models
like the Q-Former, remains under-explored.

In this work, we evaluate the performance of PEFT on InstructBLIP with two benchmarks, ScienceQA
[21] and IconQA [22], that respectively test knowledge-grounded visual reasoning and abstract visual
reasoning capabilities. Specifically we apply LoRA to the Q-Former and base LLMs, Flan-T5-XL
[23] and Vicuna-7B [24], in InstructBLIP and test with 3 different settings: applying LoRA only
to the LLM, applying LoRA only to the Q-Former, and applying LoRA to both the LLM and the
Q-Former (Figure[I). We also comprehensively test the performance of LoRA applied to different
sublayers in the transformer with different ranks. To the best of our knowledge, we are the first to
inspect the effectiveness of PEFT methods on the Q-Former for visual reasoning.

Our contributions can be summarized as follows: (1) Our experiments reveal that applying PEFT on
the LLM, rather than freezing, consistently results in better performance than InstructBLIP. (2) We
demonstrate that applying PEFT to the Q-Former reduces trainable parameters to less than 2% while
maintaining comparable performances. (3) We show that, in contrast to full fine-tuning the Q-Former
and freezing the LLM, applying PEFT on both components can achieve superior results and bring
down the total trainable parameters to less than 12%.

2 Method

In this work, we apply the PEFT method LoRA [11] to two different components in InstructBLIP,
the Q-Former and the LLM, and evaluate the performance on two visual reasoning benchmarks,
ScienceQA and IconQA.

LoRA greatly reduces trainable parameters by decomposing weight update matrix into the product
of two low rank matrices AW = BA. After the fine-tuning, weight matrix can be reparametrized
by adding the weight update to the original pre-trained model weights: W + AW = W + BA,
where W € R4k B € RIX" A € R™*k r « min(d, k). This process can prevent additional
latency during inference. Unlike the original LoRA implementation, which confines its application to
only the self-attention modules [[L1], our approach extends the use of LoRA to multiple transformer
sublayers in both the Q-Former and the LLM. For the Q-Former, we apply LoRA to the query and
value projection layers in the self-attention layers and to the query, key, value, and output projection
layers with the cross-attention layers. We also apply LoRA to the feed-forward networks. Conversely,



Method ScienceQA IconQA
LLM  Q-Former Sublayer Base Model r=1 r=2 r=4 =8 r=1 r=2 r=4 r=8

LoRA Full ffn Flan-T5-XL 86.42 86.37 85.32 8627 7340 7476 74.00 71.52
LoRA Full attn Flan-T5-XL 87.36 86.17 8691 8642 7234 7288 73.45 73.29
LoRA Full all Flan-T5-XL 87.41 87.36 88.20 8790 72.61 75.06 7323 72.74
Freeze LoRA ffn Flan-T5-XL 84.83 83.79 83.14 85.87 70.54 72.13 68.08 72.40

Freeze LoRA self-attn ~ Flan-T5-XL 86.02 83.74 79.57 86.02 71.82 7255 72.06 71.64
Freeze LoRA cross-attn ~ Flan-T5-XL  84.13 86.32 84.88 85.18 7232 7242 7232 73.92

Freeze LoRA all Flan-T5-XL 85.37 86.42 83.890 86.61 70.19 70.50 72.82 73.31
LoRA LoRA all Flan-T5-XL 88.00 88.10 88.35 88.05 7147 7334 7141 73.18
LoRA Full ffn Vicuna-7B  86.32 86.42 85.87 8597 7139 7297 73.02 7234
LoRA Full attn Vicuna-7B 86.42 86.32 85.08 8523 7236 73.16 7229 73.02
LoRA Full all Vicuna-7B 85.03 86.32 85.57 8572 73.77 71.71 7293 73.15
Freeze LoRA ffn Vicuna-7B 83.44 83.74 83.64 83.74 69.89 7250 7250 71.11

Freeze LoRA self-attn Vicuna-7B  83.19 81.51 8225 83.14 7123 7145 7142 71.74
Freeze LoRA cross-attn ~ Vicuna-7B  83.29 8324 83.14 82.75 71.11 7240 7199 73.39
Freeze LoRA all Vicuna-7B  85.18 82.80 83.74 83.44 7149 7392 7145 73.40

LoRA LoRA all Vicuna-7B  85.87 87.11 85.08 85.62 71.72 7201 72.61 73.05

Table 1: Overall performance results. "Full" indicates full fine-tuning, and the best results among 4 r
values are bolded. The best results for each PEFT category, benchmark, and base language models
are underlined. The underlined performances are used to compare the best performances between
PEFT methods in Figure

in the LLM, we apply LoRA to both the query and value layers in the attention module and to the
feed-forward network.

Base Models and Benchmarks. We selected InstructBLIP as the base model given its reported
state-of-the-art performance for fine-tuning on several downstream tasks [7], including ScienceQA
(IMG) [21]], OCR-VQA [25], and A-OKVQA [26]. We use the InstructBLIP implementation of
LAVIS [27] and use pre-trained Flan—TS-XI_E] and Vicuna-7BE] HuggingFace checkpoints in our
experiments.

We use two benchmarks from InstructBLIP covering tasks of Knowledge Grounded Visual Reasoning
(ScienceQA) [21]] and Abstract Visual Reasoning (IconQA) [22]. These benchmarks were held-out
datasets of InstructBLIP, and were not involved in training the baseline InstructBLIP model.

Knowledge Grounded Visual Reasoning is a task of answering questions with a provided image
related to the knowledge in diverse academic areas including physics, biology, and math. We use the
ScienceQA dataset which covers a variety of science topics with corresponding extensive explanations.
We only use the questions with image context (IMG). ScienceQA (IMG) has 6.2k training samples
and 2.1k, 2.0k samples for validation and testing.

Abstract Visual Reasoning is a task of answering questions after comprehending the abstract
meanings from an image. We use IconQA which contains question-answer pairs for natural images
that require comprehensive reasoning abilities to understand abstract diagrams.

Experimental setup. In the original InstructBLIP [[7], full fine-tuning was applied to the Q-Former,
while the LLM was frozen. In this work, we empirically analyze the effectiveness of training LoRA
on the Q-Former and the LLM. (1) First, we apply LoRA to the LLM while still full fine-tuning the
Q-Former, so the LLM is further trained to adapt to visual reasoning tasks. (2) Second, we apply
LoRA to the Q-Former while freezing the LLM, resulting in efficient fine-tuning of the Q-Former.
(3) Finally, we apply LoRA to both the Q-Former and the LLM. The evaluation entail testing with
different ranks (1, 2, 4, 8), and for the base models of Flan-T5-XL and Vicuna-7B. The main results of
the overall experiments are in Table[I} and the performance comparison of (1), (2), (3) and the original
InstructBLIP is in Figure 2] The implementation and training details can be found in Appendix [A]
and instruction templates used for instruction tuning can be found in Appendix [B]
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Figure 2: Performance and trainable parameter comparison among three PEFT methodologies using
base models Flan-T5-XL and Vicuna-7B on ScienceQA and IconQA benchmarks. This compares
the best performing configurations (rank value and LoRA-applied sublayers) between InstructBLIP
(Q-Former full fine-tuning with frozen LLM), LLM PEFT with Q-Former full fine-tuning, Q-Former
PEFT with frozen LLM, and Q-Former PEFT with LLM PEFT. "QF" denotes Q-Former. "FFT"
denotes full fine-tuning.

3 Experiments

PEFT on LLM. We assess the efficacy of fine-tuning the LLM in InstructBLIP using LoRA. We
consider 3 configurations: applying LoRA to the attention modules, the feed-forward network (FFN),
and both the attention modules and the FFN. Across all tasks, with both Flan-T5-XL and Vicuna-7B
as base models, fine-tuning the LLM with LoRA consistently outperforms InstructBLIP, as shown in
Figure[2] These results suggest that introducing additional trainable parameters in the LLM enhances
its language reasoning abilities for visual reasoning tasks. We find no clear performance differences
among the LoRA ranks (1, 2, 4, 8). Also, unlike previous studies on language models [14} 28], no
particular sublayer stood out in performance with LoRA.

PEFT on Q-Former. We examine the effectiveness of applying LoRA to different sublayers in the
Q-Former while keeping the LLM frozen. This involves training LoRA on the self-attention, cross-
attention, and FFN layers individually, and collectively on all three layers. We initially hypothesized
that the cross-attention layer, given its direct role in image feature extraction, would be the most
effective. However we observe no notable performance differences among the LoRA sublayer
configurations. LoRA on Q-Former either outperform or match the results of full Q-Former fine-
tuning while utilizing less than 2% of the trainable parameters (Figure[2)). This suggests that training
LoRA on the Q-Former offers significantly more efficient training while maintaining competitive
performance. Furthermore, higher LoRA ranks do not result in better performance, indicating that
the Q-Former’s low-rank weight updates for learning visual reasoning only require small intrinsic
ranks [[11]].

PEFT on both LLM and Q-Former. Finally we apply LoRA to both the Q-Former and the LLM,
using the same rank for all possible sublayers in both components. Our results show that this approach
outperforms InstructBLIP for both base LLMs across both benchmarks, using fewer than 12% of
trainable parameters (as depicted in Figure[2). A notable observation is that the performance gap
is higher in ScienceQA than in IconQA. This discrepancy can be attributed to ScienceQA’s richer



language context. Given that ScienceQA entails more language information than IconQA, training
the language model appears to yield a greater boost in performance.

4 Conclusion

In this study, we systematically evaluate the benefits of applying LoRA to the Q-Former and LLM
of InstructBLIP for visual reasoning tasks. Our results show that applying PEFT to the LLM leads
to improved performance compared to InstructBLIP. Additionally, by employing PEFT on the Q-
Former, we achieve outcomes comparable to full fine-tuning while only utilizing less than 2% of its
parameters. Finally, we find that training both the LLM and Q-Former with PEFT yields superior
results while training on less than 12% of the parameters compared to InstructBLIP. These findings
hold practical importance; our results recommend jointly training both the Q-Former and LLM using
PEFT, especially when computational resources are limited. Given our findings that demonstrate
the efficiency and effectiveness of PEFT methods on InstructBLIP, we believe this work lays the
foundation and motivate further research into efficient visual instruction tuning methods.
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A Model Training Details

We conduct each experiment in Table 1 and Figure 2 using a single A100 GPU. We set the maximum
epoch to 15 with early stopping of 3 patience steps. We use linear decay as a learning rate scheduler
with the AdamW optimizer. For the initial learning rate, we primarily use 2e-5 for experiments which
involves full fine-tuning the Q-Former, and otherwise Se-4. For certain cases, we lower the learning
rate (from 2e-5 to le-5, and S5e-4 to le-4) for effective training. These cases include: (1) When the
model is trained on less than 8 epochs (the halfway point) by early stopping, (2) When the training
is considered unstable, i.e. resulting in over 10%p lower performance than other experiment in an
equivalent setup having different r value. We set the weight decay to 0.05. For batch size, we use
16 as an effective batch size across all experiments. Only difference is that (batch size, gradient
accumulation iterations) were set to (8, 2) for Vicuna-7B and (16, 1) for Flan-T5-XL.

B Instruction Templates

We provide instructions used in ScienceQA and IconQA. We use the same format from the Instruct-
BLIP paper. We add alphabet labels for each choices and the answer. For ScienceQA, we construct
the "context" section of the instruction by incorporating information from both the ’hint’ and ’lecture’
fields, if they are available in the dataset.

ScienceQA <Image> Context: { {hint} {lecture} } Question: { {question} } Options: { {choices} }.
Answer:

Sample A Sample B
Mass of each particle: 28 u Mass of each particle: 44 u

Average particle speed: 1,300 mis Average particle speed: 1,300 mis

Context:

The diagrams below show two pure samples of gas in identical closed, rigid
containers. Each colored ball represents one gas particle. Both samples have
the same number of particles.

The temperature of a substance depends on the average kinetic energy of
the particles in the substance. The higher the average kinetic energy of the
particles, the higher the temperature of the substance. The kinetic energy of
a particle is determined by its mass and speed. For a pure substance, the
greater the mass of each particle in the substance and the higher the
average speed of the particles, the higher their average kinetic energy.
Question:

Compare the average kinetic energies of the particles in each sample. Which
sample has the higher temperature?

Options:

(a) neither; the samples have the same temperature

(b) sample A

(c) sample B

Answer:

Figure 3: Example ScienceQAﬁnstruction template.

IconQA <Image> Question: { {question} } Options: { {choices} }. Short answer:

L e oar ) e @) L)
A AL A 4R e]
Question:

The first picture is a bucket. Which picture is fourth?

Options:

(A) bucket (B) boat (C) crab
Short answer:

Figure 4: Example IconQAR instruction template.

*https://creativecommons.org/licenses/by-nc-sa/4.0/
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