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Abstract

Many studies indicate injecting human knowl-
edge by reducing output constraints during train-
ing can improve model performance and reduce
constraint violations. While there have been sev-
eral attempts to compare different existing al-
gorithms under the same programming frame-
work, nonetheless, there has been no previ-
ous work that categorizes learning algorithms
with output constraints in a unified manner. Our
contributions are as follows: (1) We catego-
rize the previous studies based on three axes:
type of constraint loss used, exploration strategy
of constraint-violating examples, and integration
mechanism of learning signals from main task
and constraint. (2) We propose new algorithms to
integrate the information of main task and con-
straint injection, inspired by continual-learning
algorithms. (3) Furthermore, we propose the
Hβ -score as a metric for considering the main
task metric and constraint violation simultane-
ously. To provide a thorough analysis, we exam-
ine all the algorithms on three NLP tasks: natu-
ral language inference (NLI), synthetic transduc-
tion examples (STE), and semantic role labeling
(SRL).

Keywords— Constraint injection, Weakly supervised
learning, Neuro-symbolic AI

I. INTRODUCTION

Neural network (NN) models typically learn from data
in the form of (input, output) pairs, which can some-
times conflict with human knowledge. Previous research
has shown that incorporating human knowledge into NN
models by reducing relevant constraint violations during
training can improve model performance and reduce these
violations [6, 10, 8, 12, 14]. The relationship between con-
straints and the task itself can be seen as a relationship be-
tween a sub-task and the main task: the main task aims for
accurate predictions, while the sub-task focuses on produc-
ing constraint-satisfying outputs.

Various studies have investigated constraint injection
during training [6, 10, 8], often by adding a constraint-
related loss to the existing supervised loss. However, how
to formulate this constraint loss and its incorporation into
the overall loss function varies across different studies and
applications.

The first goal of this work is to provide a unified anal-
ysis of existing methods under a single mathematical for-
mulation. Previous efforts to compare different constraint
injection methods [12] focused on performance, whereas
our study aims to formalize these methods to understand
key success factors. For instance, while the primal-dual al-
gorithm [10] showed positive results with dynamic weight
updates for constraint-loss, it was only tested with one loss
type, making it unclear whether the positive results were
due to the loss type or the dynamic weight update mech-
anism. Investigating the combination of different compo-
nents of constraint injection under a unified formulation is
necessary.

The second goal is to propose new learning algorithms
that integrate constraints within the suggested unified for-
mulation. A common approach involves handling a con-
straint loss term, λ ×C , where C denotes the constraint
loss and λ is a fixed scalar representing its weight. [10] in-
troduced an algorithm that dynamically controls λ , starting
at 0 and adjusting it during training. This approach, which
gradually increases λ based on constraint degrees, stands
out from methods using a fixed λ . However, there has been
insufficient research on integrating supervised data learn-
ing signals and constraint information.

Is a monotonically increasing λ necessary? Can λ be
updated considering both supervised learning and con-
straint injection? Inspired by continual learning, this pa-
per proposes a new approach that considers both super-
vised and constraint losses during gradient updates. This
method takes into account the progress of both tasks, of-
fering a new perspective on simultaneous learning. Exper-
iments demonstrate that our approach outperforms other
learning algorithms in various scenarios.
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II. RELATED WORK & UNIFIED
FORMULATION OF PREVIOUS WORK

In this section, we categorize the previous studies on
injecting constraints during training time based on three
dimensions: type of mathematical expression used for
constraint loss (§A.), exploration strategy of constraint-
violating examples (§B.), and mechanism for integrating
losses from the main task and the constraint injection task
(§C.). A common approach in machine learning is to de-
fine a loss function and employ optimization algorithms
to update model parameters in the direction of minimizing
that loss. When the labeled data {(xi,yi)}N

i=1 is given, the
goal of typical supervised learning is to solve the following
optimization problem:

min
θ

1
N

N

∑
i=1

L (xi,yi;θ), or simply min
θ

L (θ) (1)

, where L (x,y;θ) is the standard supervised loss function
for the task we are learning.

Most of the existing constraint injection methods, while
differing in specific formulations, inject the constraint in-
formation by expanding the loss function in a following
manner:

T (θ) = λ1L (θ)+λ2 ·C (θ) (2)

, where C (θ) is a loss related to the constraint, and λi’s are
fixed weights, We can further generalize the equation (2)
as follow:

∇T (θ) = Λ
sup ·∇L (θ)+Λ

con ·∇C (θ) (3)

, where Λsup, Λcon are usually scalar matrices. C reflects
the human knowledge the algorithm wants to inject and
is typically computed without the true label. To be more
precise, for some hard constraints on output labels, C (θ)
is computed via output fθ (x) given some unlabeled input
x. Injecting more than one hard constraint is also possible

by expanding Λcon ·∇C (θ) to
K
∑

i=1
Λcon

i ·∇Ci(θ) in equation

(3) , where K is a number of constraints.
To unify and distinguish different algorithms that learn

with constraints, we focus on how C (θ) is formulated
(§A.), how constraint-violating examples are explored
(§B.), and how Λsup, Λcon (in equation (3)) are deter-
mined(§C.).

A. Type of constraint loss

Type of constraint loss is related to how the violation of
constraints can be transformed into the form of a differen-
tiable loss function C (θ) in equation (2), which we will re-
fer to as the constraint loss. How to convert symbolic con-
straints into a differentiable loss function can be broadly
categorized into two approaches: Probabilistic Soft Logic
(PSL) and REINFORCE.

Probabilistic Soft Logic (PSL) PSL [3] is associated
with expressing logic in terms of probabilities, and re-
search utilizing PSL measures the degree of constraint vi-
olation in the logic itself, employing it as a loss. Gödel,
product, Łukasiewicz logics can be primarily used to
soften logic [9, 10, 6]. Generally, PSL is not suitable for
representing all types of hard constraints, since it must be
converted to linear constraints before they can be directly
applied [12]. Section §B. is an example task illustraing the
challenges in applying PSL.

REINFORCE In contrast, studies employing the RE-
INFORCE [13] evaluate whether (or to what degree) the
model’s output violates constraints. Constraint injection
research during training time using REINFORCE can
be further classified into two ways depending how the
reward is formulated. A simple method is to assign binary
reward (e.g.: {1, 0}) when the model satisfies or violates
the constraints [1]. This simple method with binary
reward only considers whether the constraint is satisfied
or not. On the other hand, one could make the reward
more fine-grained by measuring the degree of constraint
violation and assigning real-valued rewards related to
it [8]. A significant feature of REINFORCE is that the
determination of constraint loss relies solely on the rule
of assigning rewards based on the presence or absence
of constraint violation in sampled examples, regardless
of the specific constraint. This differs from PSL in that it
does not require intricate implementations for generating
constraint loss. However, due to the need for sampling
procedures, the computational cost is generally higher
than when using PSL [12].

To summarize, PSL and REINFORCE are mainly
used approach to generate C (θ) in eq.(2) to reduce ex-
pected constraint violation with following differences.
PSL defines constraint violation as a continuous measure,
while REINFORCE relies on the reinforcement learn-
ing paradigm to guide the model towards satisfying con-
straints. Specifically, the REINFORCE method is divided
into two types based on the method of setting rewards: bi-
nary rewards and real rewards.

B. Exploration of constraint-violating examples

Exploration of constraint-violating examples can signif-
icantly impact the effectiveness and efficiency of constraint
learning. The possible questions we have are as follows:
Would it be better to explore the model’s approximate out-
put space? Would it be best to examine the model’s best
possible effort? Or would it be better to explore by con-
sidering all possible probability distributions? Theses are
considered to determine the magnitude of the constraint
loss C . For example, in REINFORCE with {1, 0} reward,
the reward will be 0 if we only visit constraint-violating
examples.

2



According to the questions posed above, exploration
strategies are divided by three, each explained below: sam-
pling, argmax, and exhaustive.

Sampling Sampling strategy involves drawing samples
from the forward propagation results of the model f to
examine different instances that violate constraints. As
demonstrated by [1], this method commonly employs the
REINFORCE algorithm to incorporate constraint viola-
tions into the loss function for the identified examples. The
sampling strategy can be applied independently to all com-
binations for our other analysis axes, specifically concern-
ing the type of constraint loss (§A.) and the integration
mechanism of learning signals from main task and con-
straint (§C.).

Argmax (Top-1) Argmax (Top-1) strategy, constraint vi-
olation is assesed by choosing the combination with the
highest probability from f (x). Following greedy decod-
ing process such as beam search or Vitrerbi decoding [8],
it evaluates constraint violation for the decoded example.
Similar to sampling, it evaluates constraint violation for
the decoded example, but distinguishes itself by consid-
ering the most probable prediction at that moment without
multiple samplings. Like the sampling strategy, the argmax
strategy can also be applied independently to all combina-
tions under our other axes of anlysis.

Exhaustive Exhaustive strategy considers probabilities
of all output class and its combinations. It is prominently
employed in research related to PSL [10, 6]. Since there is
no sampling involved, it is computationally cost-effective
rather than sampling strategy. When considering the type
of constraint loss (§A.), our performance evaluation is ex-
clusively conducted using PSL for the exhaustive strategy,
excluding the REINFORCE in the constraint loss, as it
would be impossible to consider all possible combinations
in REINFORCE. Since the exhaustive strategy can only be
applied for constraint loss type of PSL, exhaustive strategy
cannot handle all of general type of constraints.

C. Integration mechanism of learning signals from main
task and constraint

This section is related to the integration of main task
and the constraint information. We categorize integration
mechanisms of prior studies into static and monotone
(λ ↑). Additionally, we introduce three new integration
mechanisms based on the linear projection: projection-sup,
projection-con, and projection-both, which will be dis-
cussed in section §iii.. We provide detailed explanations
of these mechanisms below.

Static For constraint loss C , a widely used approach in-
corporating C into the existing supervised loss term is to

add λ ·C to the previous existing loss, where λ is a fixed
positive real number [1, 6, 8, 9]. In this approach, the value
of λ remains unchanged throughout the training process,
serving as a constant multiplier that determines the relative
influence of C in comparison to the main task loss L in
eq.(2).

Monotone (λ ↑) On the other hand, the study by [10] de-
viates from this by not using a fixed λ . Instead, it initiates
training with λ starting from 0 and progressively adjusting
its value during the learning process. This concept emerged
from the transformation of the constrained optimization
problem into a max-min problem, employing alternative
updates. In this method, the value of λ steadily grows
throughout the training, signifying a progressive emphasis
on the constraint loss.

Projection Unlike previous methods, projection meth-
ods perform gradient updates considering the gradients
of two losses: L and C . For both static and monotone
(λ ↑), Λ’s are all diagonal matrices in equation (3).
However, the projection method results in non-diagonal
matrices depending on the gradients of both loss functions.
The detailed formulation will be introduced in section §iii..

It is important to note that the decision on how to
integrate two losses (L , C ) is entirely separate from the
process of formulating the constraint loss C (§A.), and the
exploring strategy of constraint-violation examples (§B.).
Therefore, adjusting Λ’s (or, λ ’s) mentioned in this section
can be independently combined with other analysis axes.

III. FURTHER EXPLORATION ON
INTEGRATION OF MAIN TASK AND

CONSTRAINT INFORMATION

In this section, we propose new methods for integrat-
ing the losses of main task and constraint injection task.
Departing from categorized methods used in previous re-
search, ‘static’ and ‘monotone(λ ↑)’, we introduce three
new integration mechanism for the two losses: ‘projection-
sup’, ‘projection-con’, and ‘projection-both’.

Motivation Gradient Episodic Memory (GEM) [7]
model is designed for continual learning for positive back-
ward transfer, aiming to store memories of previous tasks
in such a way that the loss does not increase when learn-
ing from new data. It introduces constraints to prevent an
increase in loss for previous tasks stored in memory when
learning from new data and presents a new minimization
problem. A-GEM [4] is a variant of GEM that is designed
for effective memory and computational cost, by storing
the averaged episodic memory across the all tasks. Moti-
vated by these works, we propose a new method for in-
tegrating losses – L (θ) and C (θ) – for two tasks. In
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GEM/A-GEM, whenever new data was deemed to violate
positive backward transfer, it applies a projection opera-
tion for the gradients to adjust them. We adapt the concept
from GEM/A-GEM and utilize it in designing the integra-
tion mechanism of main task and constraint information

Method Recall that the derivative of loss function with
constraint has form of:

∇T (θ) = Λ
sup ·∇L (θ)+Λ

con ·∇C (θ)

Our approach is rooted in the idea that supervised learning
and constraint injection are two distinct tasks, and during
their respective updates, we can prevent negatively effect-
ing each other by executing a projection of gradient for
each other. The followings are explanations of three new
algorithms.

Projection-sup applies the projection method to the gra-
dient of the constraint loss (namely, adjust Λcon) to prevent
it from negatively affecting the supervised learning task,
while storing the averaged gradient vector of supervised
learning task gsup previously used for training. Mathemat-
ically, project ∇C (θ) via:

Proj(∇C (θ)) = ∇C (θ)−
∇C (θ) ·gsup

gsup ·gsup
gsup (4)

, whenever ∇C (θ) · gsup < 0. Then, the vector
Proj(∇C (θ)) satisfies Proj(∇C (θ)) · gsup = 0. This
ensures that ∇C is transformed orthogonally to gsup,
preventing it from providing information that contradicts
supervised learning.

Conversely, projection-con applies the projection
method to the gradient of the supervised loss (namely, ad-
just Λcon) to prevent it from negatively affecting the con-
straint injection task, while storing the averaged gradient
vector of constraint injection task gsup previously used for
training. Mathematically, project ∇L (θ) via:

Proj(∇L (θ)) = ∇L (θ)− ∇L (θ) ·gcon

gcon ·gcon
gcon (5)

, whenever ∇L (θ) · gcon < 0. Then, the vector
Proj(∇L (θ)) satisfies Proj(∇L (θ)) · gcon = 0. This
ensures that ∇L is transformed orthogonally to gcon,
preventing it from providing information that contradicts
constraint injection.

Projection-both combines both projection-sup and
projection-con, applying projection to both gradients
(namely, adjust both Λsup and Λcon) to ensure that neither
task negatively impacts the other. It stores two types of gra-
dients separately by each task used for training before, and
apply two projections (4) and (5) together.

IV. TASKS

In this section, we introduce the tasks for which we con-
duct experiments: Natural Language Inference (NLI), Syn-

thetic Transduction Example (STE), and Semantic Role
Labeling (SRL).

A. Natural Language Inference (NLI)

NLI is a task that involves understanding the logical re-
lationships between pairs of text. Given a premise (P) and
a hypothesis (H), the task is to determine whether P entails
H, contradicts H, or maintains a neutral relationship with
H. There exists constraints such as if P entails H, then H
must not contradict P. We used the five constraints listed in
[9]. The dataset used is SNLI [2].

B. Synthetic Transduction Example (STE)

We also present an artificial task utilized in [5]. A
sequence transducer T : LS → LT converts the source
language LS = (az|bz)∗ to the target language LT =
(za|bbb)∗, for example, T (azbzbz) = zabbbbbb. The con-
straint imposed involves the relationship between the num-
ber of ‘b’ in the source and the target. Specifically, the
count of ‘b’ in the target must be exactly three times that
in the source.

C. Semantic Role Labeling (SRL)

SRL is a natural language processing task that predicts
the semantic roles of each word in a sentence with respect
to a given verb or predicate. The method of our work em-
ployed for this purpose is BIO tagging.

The Unique Core Roles constraint from [6] is applied as
a constraint, which means that there can be no more than
one occurrence of each core argument. For a predicate u, if
the model predicts the i-th word as B-X, then other words
in the same prediction should not be predicted as B-X. This
can be expressed as follow.

∀ u, i ∈ s,X ∈ Acore,

BX(u, i)→
∧

j∈s, j ̸=i

¬BX(u, j). (6)

The dataset we used is English Ontonotes v5, with the
CoNLL-2012 shared task format [11].

V. EXPERIMENTS

Our experiment is composed of NLI, STE, and SRL
tasks, with accuracy, token accuracy, and F1 score are used
as the main task metrics, respectively. Our goal is to first
observe the performance trends of algorithms according to
our three classification criteria. Then, we will explore com-
binations that show particularly strong performance.

Experiment environment We used RTX 3090 GPU,
and Adam optimizer for all of trainings. We conducted
training for each case 10 times, and the results are dis-
played as the mean (in the larger font above) and standard
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deviation (in the smaller font below) for both the main task
metric (denoted by Perf) and constraint violation (denoted
by Const.Vio)1 rate.

Metric Comparing the superiority of experimental re-
sults considering two different metrics simultaneously is
very challenging, especially when there is no occurrence of
Pareto-improvement. The Hβ -score (Harmonic β Score)
we propose is an indicator that allows for a quick and
clear evaluation of experimental outcomes based on two
metrics. Assume we have two metrics to consider, and de-
note the scores for each metric as m1 and m2, respectively.
Both metrics are assumed to have values ranging from 0 to
1, with higher values indicating better performance2. The
Hβ -score is similar in form to the Fβ -score and is defined
as follow:

Hβ (m1,m2) =
1+β 2

1
m1

+ β 2

m2

.

The Hβ -score is exactly the same in form as the Fβ -score.
It is simply an extension of the Fβ -score, which uses pre-
cision and recall as arguments, to be a score for any two ar-
bitrary metrics. If the magnitude of β increases, the evalu-
ation significantly considers the weight of m2. Conversely,
as the value of β approaches zero, the weight of m1 is sig-
nificantly considered in the evaluation.

Experiment results Table 1 in appendix §A shows the
experiment results for all combinations possible in our
analysis axes which consist of previous methods and our
newly proposed methods. For each task, we present the ex-
perimental results based on our three analysis axes pro-
posed in section §ii.: type of constraint loss (soft, binary,
real), exploration strategy of constraint-violating examples
(top-1, sampling, exhaustive), and mechanism for integrat-
ing the main and the constraint information (static, mono-
tone, proj-sup, proj-con, proj-both).

As the sheer number of experiments is too large to in-
terpret in table 1, we try to examine key factors for diverse
Hβ -scores by dissecting the table 1 from different perspec-
tives.

Trends per analysis axes Figure 1 illustrates the top 5
experimental results with the highest Hβ -scores, consider-
ing each of the five exploring strategies described in sec-
tion §B.. Among the five strategies, one clear observation is
that the sampling method consistently demonstrates supe-
rior performance across all tasks. Although there are varia-
tions, performance tends to improve as the sample size in-

1For example, 84.72
±00.77

means that the average is 84.72, and the

standard deviation is 00.77 from 10 experiments.
2Constraint violation rate is used for table 1. However, when

we consider Hβ -score, we convert it to the constraint satisfaction
rate, which is 1−(constraint violation rate).

Fig. 1. The Hβ -score values for different values of β for three
tasks: NLI, STE and SRL. For each β , the top 5 experimental
results with the highest Hβ -scores are presented for each of the
exploring strategy described in section §B..

creases. However, the overall performance of the full strat-
egy is not favorable, especially in SRL task. In the full
strategy, the model generates errors that significantly dif-
ferent from those expected for realistic output, resulting
in suboptimal performance due to the associated loss. We
hypothesize that the full strategy’s performance of SRL is
even worse than that observed in NLI, due to the signifi-
cantly larger output space.

Specific combinations of axes outperforming others
Figures 2, 3, and 4 depict the Hβ -scores for different com-
binations of loss types and integration mechanisms when
the sampling strategy is fixed as samp-10. For visibility,
we consider values of 0.3, 1, and 3.

Notably, our newly proposed projection-based algo-
rithms, projection-con and projection-both, exhibit the
highest-level performance across most situations. We
found that for the soft or real types of loss, the projection-
both mechanism shows the best-level performance than
other mechanisms for most combinations. In the case of the
SRL task, there are instances where the monotone mech-
anism performs well. Particularly, when used in conjunc-
tion with a soft type of loss, the monotone mechanism ex-
hibits higher performance, which is inconsistent with other
experimental results. The reason for this discrepancy has
not been clearly identified yet, but the specific characteris-
tics of weight updates in constraint loss combined with a
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Fig. 2. Experiment result from NLI task with samp-10. Three
bar plots represents the Hβ -scores with respect to the integration
mechanism (separated by the x-axis) and type of constraint losses
(separated by the color). From top to bottom, the corresponding
values of β ’s are 0.3, 1, 3, respectively.

soft type of loss for achieving higher performance remain
a subject for future work.

Another noteworthy observation is that under samp-10,
the soft type of loss exhibits the highest performance in
most cases. Results from figures 2 and 4 show that, except
for the projection-sup instance in SRL, soft type of loss
generally outperforms real type of loss. It indicates that
soft type of loss performs exceptionally well when com-
bined with the sampling strategy.

VI. CONCLUSIONS

We have proposed three axes for classifying and catego-
rizing learning algorithms related to injecting constraints:
type of constraint loss, exploring strategy of constraint-
violating examples, and integration of main task and con-
straint information. To the best of our knowledge, this
study is the first to systematically classify existing learn-
ing algorithms with constraints under a unified formula-
tion. We have analyzed the key factors that affect perfor-
mance based on our analysis criteria, which helps in un-
derstanding learning algorithms with constraints.

Additionally, we have introduced three projection-based
mechanisms as a novel approach for the integration mecha-
nism of main task and constraint information. Viewing the
main task and constraint injection as two separate tasks,
we started with the motivation to prevent negative effects

Fig. 3. Experiment result from STE task with samp-10. Three
bar plots represents the Hβ -scores with respect to the integration
mechanism (separated by the x-axis) and type of constraint losses
(separated by the color). From top to bottom, the corresponding
values of β ’s are 0.3, 1, 3, respectively.

on each other during the gradient update process. This in-
troduces a new perspective on integrating learning signals
from main task and constraint, which shows superior per-
formance compared to existing integration mechanisms.
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A EXPERIMENT RESULT

Table 1 represents the experiment results for all com-
binations, containing main task metrics(%, denoted as
“Perf”) and constraint violation rates(%, denoted as
“Const.vio”). The gray-colored numbers represent results
with main task metrics and constraint violations worse than
the baseline. For each type of constraint loss, results show-
ing the highest main task metric and lowest constraint vi-
olation are highlighted in bold. For individual task, the
highest main task metric and lowest constraint violation
results are marked with an asterisk (*). SRL, NLI, and
STE tasks used F1 score, accuracy, and token accuracy
for main task metric, respectively. For the types of con-
straint losses, soft, binary, and real respectively represents
PSL, REINFORCE method with binary reward, and RE-
INFORCE method with real reward. The term ‘Baseline’
refers to the experiment results without any constraint in-
jection. To compare various algorithms under a unified
formulation, experiments involving constraint loss related
to REINFORCE were conducted by generating constraint
loss for examples that violated the constraints.

Note that we can easily extend the learning algorithms
with constraints to semi-supervised learning. For SRL and
NLI tasks, we also utilized unlabeled data during the train-
ing process. For SRL, we randomly selected 3% of training
data for unlabeled data. For NLI, we utilized the unlabeled
data used in [1]3.

3https://github.com/pylon-lib/pylon/tree/master/examples/nli
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Task Top-1 Sampling-1 Sampling-5 Sampling-10 Exhaustive

Perf Const.Vio Perf Const.Vio Perf Const.Vio Perf Const.Vio Perf Const.Vio

NLI

Baseline Acc: 65.14
±00.30

, Const.Vio: 20.81
±02.57

soft

static 65.18
±00.35

04.72
±00.88

65.40
±00.40

03.60
±00.60

65.31
±00.26

02.23
±00.36

65.22
±00.40

02.29
±01.88

65.20
±00.34

01.95
±00.22

monotone (λ ↑) 65.21
±00.26

21.51
±03.03

65.20
±00.27

20.24
±02.09

65.30
±00.38

21.83
±01.74

65.33
±00.54

20.20
±01.67

65.20
±00.55

22.72
±02.05

Proj-Sup 65.28
±00.43

20.14
±02.99

65.05
±00.48

20.73
±01.61

65.26
±00.40

02.08
±00.38

65.38
±00.20

13.93
±02.55

65.36
±00.49

01.95
±00.41

Proj-Con 65.46
±00.27

03.05
±00.42

65.23
±00.40

03.54
±00.74

65.05
±00.26

02.40
±00.33

65.48
±00.28

∗ 01.73
±00.17

65.30
±00.29

02.50
±00.36

Proj-Both 65.20
±00.40

17.45
±03.13

65.41
±00.29

06.16
±01.75

65.39
±00.21

08.19
±05.04

65.23
±00.32

01.17
±00.84

∗ 65.40
±00.43

21.30
±03.29

binary

static 65.20
±00.38

02.45
±02.65

64.23
±00.44

03.24
±05.29

63.26
±00.38

17.02
±11.67

63.26
±00.49

24.72
±02.40

- -

monotone (λ ↑) 65.36
±00.31

20.30
±03.38

65.10
±00.29

22.66
±02.66

65.16
±00.37

22.00
±01.78

65.29
±00.36

21.32
±02.74

- -

Proj-Sup 65.21
±00.35

14.73
±03.30

65.25
±00.47

07.06
±01.66

65.22
±00.23

02.25
±00.20

65.18
±00.25

07.80
±04.97

- -

Proj-Con 65.11
±00.49

07.49
±06.08

65.42
±00.19

11.80
±02.43

65.25
±00.35

02.57
±00.16

65.33
±00.24

20.40
±03.01

- -

Proj-Both 65.16
±00.28

19.76
±02.85

65.05
±00.34

02.11
±00.28

65.23
±00.41

02.10
±00.37

65.14
±00.49

02.18
±00.33

- -

real

static 65.26
±00.24

20.60
±01.29

64.66
±00.34

01.92
±00.90

63.28
±00.44

23.82
±01.89

63.26
±00.30

22.72
±07.16

- -

monotone (λ ↑) 65.42
±00.21

21.45
±01.88

65.14
±00.49

20.97
±02.25

65.26
±00.38

21.36
±02.26

65.26
±00.38

21.23
±03.68

- -

Proj-Sup 65.26
±00.26

22.93
±01.96

65.21
±00.25

22.70
±02.23

65.11
±00.39

20.68
±02.76

65.51
±00.48

21.65
±02.03

- -

Proj-Con 65.27
±00.32

20.98
±01.67

65.33
±00.36

08.75
±01.86

65.04
±00.24

02.39
±00.36

65.49
±00.38

01.78
±00.20

- -

Proj-Both 65.09
±00.34

23.21
±01.27

65.15
±00.31

07.04
±02.77

65.40
±00.39

09.33
±03.42

65.29
±00.26

20.40
±03.62

- -

STE

Baseline Tok-Acc: 67.26
±02.26

, Const.Vio: 28.89
±10.07

binary

static 69.98
±00.43

29.35
±12.11

73.59
±02.37

18.83
±12.72

69.35
±02.20

33.32
±06.73

69.68
±03.22

29.87
±17.58

- -

monotone (λ ↑) 67.17
±06.42

26.93
±13.09

71.03
±05.72

33.55
±11.46

69.43
±03.79

24.89
±11.15

71.07
±04.63

21.74
±08.34

- -

Proj-Sup 43.55
±04.03

93.87
±03.65

75.01
±05.90

10.86
±07.28

69.19
±03.67

26.21
±16.22

71.81
±02.96

26.38
±17.69

- -

Proj-Con 49.64
±03.27

98.40
±02.10

73.58
±03.97

22.18
±16.16

74.96
±06.76

22.71
±16.42

77.48
±08.92

19.08
±14.79

- -

Proj-Both 51.19
±01.70

98.77
±02.08

70.71
±03.92

23.43
±12.72

68.51
±03.34

26.62
±10.77

68.94
±02.20

26.06
±15.75

- -

real

static 67.77
±04.25

30.18
±12.86

70.16
±03.03

22.18
±12.04

70.30
±04.02

10.86
±07.53

∗ 78.13
±05.00

15.37
±11.15

- -

monotone (λ ↑) 63.73
±04.43

22.92
±13.45

60.74
±02.93

51.79
±34.51

69.91
±03.29

19.07
±13.41

71.53
±03.74

21.99
±13.05

- -

Proj-Sup 46.30
±04.91

94.17
±04.92

54.32
±02.47

98.86
±01.72

73.02
±04.14

15.04
±08.75

72.55
±02.49

18.36
±10.61

- -

Proj-Con 48.20
±03.88

95.29
±04.58

52.98
±01.16

99.74
±00.73

72.24
±03.04

14.26
±07.57

75.86
±03.16

18.66
±08.36

- -

Proj-Both 50.60
±02.60

98.68
±03.16

74.81
±05.59

17.40
±16.24

72.00
±04.31

15.03
±14.56

80.92
±04.24

∗ 12.91
±06.07

- -

SRL

Baseline F1: 84.72
±00.77

, Const.Vio: 20.43
±04.09

soft

static 85.24
±01.49

15.17
±02.04

85.02
±01.55

14.07
±03.02

85.21
±01.13

19.53
±02.80

85.15
±00.74

19.18
±36.95

85.31
±00.98

21.72
±04.61

monotone (λ ↑) 84.42
±01.07

18.53
±04.44

85.78
±01.46

∗ 14.40
±03.66

85.12
±01.23

16.38
±03.12

84.49
±01.16

05.73
±01.42

∗ 85.18
±00.81

15.97
±02.97

Proj-Sup 85.02
±00.98

20.79
±04.63

85.19
±01.24

20.23
±04.85

85.09
±01.03

19.59
±03.93

85.32
±01.26

15.86
±04.08

85.18
±00.97

18.73
±04.03

Proj-Con 84.96
±00.60

15.72
±01.23

85.24
±01.53

11.76
±02.44

85.07
±00.90

12.80
±02.85

84.58
±01.17

12.11
±03.61

84.31
±00.57

18.04
±04.01

Proj-Both 85.21
±01.21

21.86
±03.13

84.71
±01.06

12.11
±00.37

85.62
±01.68

17.68
±03.57

84.93
±02.06

10.66
±01.83

85.03
±01.11

17.64
±04.26

binary

static 85.20
±01.51

19.84
±00.66

85.52
±01.02

19.53
±02.34

85.19
±00.91

18.90
±02.91

84.71
±01.28

22.48
±04.34

- -

monotone (λ ↑) 84.51
±00.94

14.25
±02.93

84.36
±00.75

20.98
±05.88

85.23
±01.44

15.50
±03.37

85.19
±00.68

16.26
±04.40

- -

Proj-Sup 84.14
±01.05

21.20
±02.12

84.57
±01.20

19.99
±02.20

85.70
±01.01

22.44
±03.92

84.73
±00.57

19.05
±03.03

- -

Proj-Con 84.54
±00.71

21.28
±03.91

85.56
±01.23

19.62
±04.38

85.06
±01.03

19.79
±03.58

84.74
±00.86

19.23
±06.10

- -

Proj-Both 85.23
±00.77

20.36
±04.22

84.89
±01.36

19.14
±03.33

84.85
±01.014

19.46
±03.91

84.61
±00.63

21.09
±03.39

- -

real

static 85.05
±00.68

18.26
±03.21

85.12
±00.96

09.79
±03.15

85.33
±01.09

22.37
±04.43

84.85
±01.23

20.32
±04.10

monotone (λ ↑) 84.73
±00.78

21.99
±04.21

85.09
±00.96

23.78
±03.95

84.94
±01.29

19.61
±04.50

85.36
±01.14

20.00
±02.65

- -

Proj-Sup 85.19
±01.46

19.19
±04.13

85.09
±00.90

17.16
±04.40

84.87
±00.94

09.21
±02.60

85.29
±01.25

09.05
±02.20

- -

Proj-Con 85.06
±00.93

18.22
±04.32

84.31
±01.67

09.47
±04.19

85.19
±01.32

22.55
±05.09

85.11
±01.08

17.50
±03.98

- -

Proj-Both 85.05
±00.94

18.54
±04.55

85.25
±00.74

20.36
±04.28

84.54
±00.41

11.96
±02.87

84.33
±07.19

10.23
±03.35

- -

Table 1. Experiment results for all combinations.
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