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Abstract

As NLP technologies advance, the demand for
automatic processing of expert domain docu-
ments has surged, driven by the need to manage
such documents’ increasing volume and com-
plexity. This paper addresses the challenge of
performing effective question answering (QA)
on numerical tabluar data on expert domain
documents. Our study shows that fine-tuning
models on specific domains often impede gen-
eral reasoning capability showing dependen-
cies on specific table header terms or jargon
in question. To address this problem we pro-
pose Numerical Reasoning utilizing Primitive
Description (NRPD) framework that enhances
the generalization capability of models to im-
prove numerical reasoning performance. Addi-
tionally, our approach incorporates high-level
descriptive information to create robust models
capable of handling novel tables and operations.
Our contributions include identifying and miti-
gating the issue of header dependency through
anonymization, leveraging self-supervised learn-
ing to automatically generate numerical reason-
ing data, and proposing a new system that can
leverage high-level descriptions to disentangle
domain-specific terminology. This results in a
model that is better equipped to handle real-
world numerical reasoning scenarios, addressing
overlooked aspects in existing research.

Keywords— NLP, QA, Numerical Reasoning, Self-
supervised learning

I. INTRODUCTION

Recent advancements in Natural Language Processing
(NLP) have led to significant improvements in complex un-
derstanding and generation tasks. However, language mod-
els still face challenges in numerical reasoning tasks [12]].
Numerical reasoning involves finding relevant documents

based on a given query and generating the correct answer
by creating a program. Numerical reasoning is especially

Test set
FinQA Financial jargon Anonymized
FinQA | 61.54 11.49 41.02

Table 1. Comparison of performance metrics on different test
sets. The “Financial jargon” includes terms not present in the
training set of FinQA, aiming to analyze Jargon dependency. The
”Anonymized” examines header dependency by replacing table
headers with anonymized tokens on FinQA (B.)

challenging in expert domains, where it requires not only
generating accurate arithmetic operations but also reflect-
ing specific domain knowledge. Nevertheless, efforts to au-
tomate the processing of expert domain documents have
been ongoing as processing these documents are expensive
due to requiring skilled professionals.

Particularly in finance, previous studies [3} 16} [15, [16]
have attempted to enhance numerical reasoning ability in
expert domains by fine-tuning language models toward
specific domains. However, we unveil that this approach
often deters the generalization capability of a model (Ta-
ble [2) which makes a numerical reasoner trained on one
dataset inapplicable to other table datasets.

We further identify that two key factors contribute to
the limited generalization capability of numerical reason-
ing for Table QA with our analysis in (Table[I). (1) Header
dependency: Table headers may differ from those encoun-
tered during model training, we observe that the models
fine-tuned in certain dataset (e.g.FinQA) struggle to pro-
cess information from tables with unfamiliar headers. (2)
Domain-Specific Jargon: In numerical reasoning tasks,
questions typically contain tokens that represent the ar-
guments (e.g. sales, revenue) and operations (e.g. differ-
ence, ratio) needed to generate the correct answer. How-
ever, domain-specific jargons that encapsulate both argu-
ments and operations within a single term will not perform
well during test-time if the model has not been properly
exposed to these terms in training.

To address these problems, we present the Numerical
Reasoning utilizing Primitive Description (NRPD) frame-
work, consisting of the following main components:

First, unlike traditional numerical reasoning approaches



Question: What was the percent of the change in the stock price performance for hum from 2010|program:
to 20117 subtract(201,125),divide(#0,125)
Description: [ hum - hum] / hum v OURS predicted:
Auxiliary subtract(201,125),divide(#0,125)
information 12/31/2009 12/31/2010 12/31/2011 12/31/2012 12/31/2013 12/31/2014 % Baseline predicted:
hum $ 100 $125 $ 201 $160 $ 244 $342 divide(201,125),divide(#0,125)
s&p 500 $ 100 $ 115 $ 117 $ 136 $ 180 $ 205
peer group | $ 100 $112 $123 $144 $198 $ 252
Question: what was the 2006 tax expense? program:
Description: the provision for income taxes * the effective tax rate multiply(829, 29)
2006 2005 2004 v OURS predicted:
Doma.;p - computed expected tax $987 |$633 | $129 multiply(829, 29)
specific
Jr;rgon state taxes net of federal effect 86 -19 -5 % Baseline predicted:
non deductible executive compensation 11 14 12 subtract(987, 829)
provision for income taxes $829 | $480 | $ 104
effective tax rate 29% | 27% | 28%

Fig. 1. The examples illustrate cases where the baseline method fails, but NRPD provides correct results. In the first case, The de-
scription is utilized as auxiliary information to generate the correct answer. In the second case, This is an effective way to deal with

domain-specific jargon where baseline models fail.

Test set
Train FinQA NumReason-500
FinQA 61.54 5.62
NumReason-500 | 1.48 81.45

Table 2. NumReason-500 is a dataset that we automatically gen-
erated based on S&P500 SEC reports, while FinQA is a human-
annotated dataset. Both datasets originate from the same domain
and similar sources. However, when the same model is trained
on one dataset and tested on the other, significant performance
degradation is observed.

that rely solely on the query, the NRPD framework lever-
ages primitive descriptions to aid in generating answers.
Experimental results demonstrate that incorporating de-
scriptions into the query can improve performance, with
average performance increasing from 27.10 to 64.59 across
various datasets.

Second, we propose anonymizing headers during train-
ing to reduce header dependency. This approach prevents
the model from memorizing specific headers to solve prob-
lems, thereby enhancing its ability to properly learn numer-
ical reasoning skills effectively.

Third, we propose a self-supervised learning (SSL) ap-
proach to train the model to that can effectively utilize
descriptions and anonymization. This technique gener-
ates datasets entirely automatically, eliminating the need
for human annotation. During the self-supervised learn-
ing process, we applied anonymization to mitigate header
dependency and jargon dependency, ensuring the model
learns under unbiased conditions in expectation for it to be
applicable to a wide variety of table numerical reasoning
problems.

We examine the effectiveness of our SSL approach by

further fine-tuning the SSL model on small samples from
the expert-domain dataset. This approach improves the av-
erage performance by 37%-point (more than double) com-
pared to models that did not utilize SSL. This proposed ap-
proach exceeds the performance of models trained on the
full expert-domain dataset by a large margin even when
utilizing a small portion (10%) of the dataset and is more
robust to domain shift. Furthermore, with sufficient expert-
domain data on the order of thousands of examples, the
NRPD framework can increase the document processing
accuracy of non-experts to as high as 79.61%, within 8%-
point of the experts accuracy, by improving the baseline
with the same dataset by 20%-point.
Our contributions are fourfold:

¢ Highlight the Lack of Generalization in Tradi-
tional Fine-tuning Approach We identified that the
traditional fine-tuning approach frequently results in
the model losing its generalization ability due to
header dependency and domain-specific jargon.

* Propose Methodologies to Enhance Generaliza-
tion Ability: we introduced Self-Supervised Learning
(SSL) and Anonymization. SSL allows the generation
of diverse numerical reasoning data without human
labor. During SSL, anonymization can be applied to
prevent the model from building spurious dependen-
cies to headers and jargon.

e Enhanced Transferability for low-resource envi-
ronments Our methodology demonstrated superior
performance compared to traditional models trained
on thousands of expert-domain data samples, even
when trained on only a few hundred such samples.



* NRPD Framework for Bridging the Expertise Gap
With the assistance of NRPD, we can significantly en-
hance the ability of non-experts to process documents
in specialized domains.

II. RELATED WORKS

Numerical Reasoning has been extensively studied and
is recognized as one of the limitations of recent large lan-
guage models (LLMs) [12]. Datasets like DROP [8] and
MathQA [1] are prominent examples that focus on nu-
merical reasoning. These datasets involve locating support-
ing information from text or tables and extracting answers
based on the relevant information. Furthermore, the Hy-
bridQA [4], which combines information from both text
and tables, is also being explored. Tables contain struc-
tured information that requires comprehensive understand-
ing. This has led to the development of encoders such as
TaBERT [[14] and TAPAS [10], which incorporate embed-
dings that capture the relationships within tables. Recently,
there has been a shift towards leveraging large language
models (LLMs) for this task, given their superior capacity
for understanding and generating text [2} |11} |3]].

Finance Numerical Reasoning Research on numerical
reasoning is also actively conducted in the finance domain.
FinQA [3] and TATQA [16] are typical numerical reason-
ing tasks that address both text and table contexts. Addi-
tionally, existing studies have critiqued the simplicity of ta-
bles, leading to the introduction of MultiHiertt [[15]], which
handles more complex tables. Furthermore, real-world sce-
narios necessitate remembering previous questions, as re-
quired in conversational contexts like ConvFinQA [6]].

Self-supervised learning in reasoing task In the realm
of reasoning tasks, self-supervised learning is extensively
researched to enhance reasoning capabilities by generating
or augmenting datasets. [9] aims at mathematical reason-
ing by separately generating numeric data and textual data,
thus promoting improvements in comprehension and nu-
merical reasoning. [[13] boosts performance by using ex-
ternal sources to find missing information in questions and
tables through SQL queries.

I1I. TASK DEFINITION

In this work, we address the challenge of generating rea-
soning programs to answer complex numerical questions
over financial data. Our approach builds on the method-
ology introduced in the FinQANet framework[3]], specifi-
cally focusing on the program generator component. Fin-
QANet is a comprehensive framework consisting of two
main components: a retriever and a program generator. For
the purpose of our paper, we concentrate exclusively on the
program generator.

A. Program Generator

The program generator is tasked with generating exe-
cutable reasoning programs to answer financial questions.
Given a financial report F consisting of textual content E
and structured tables 7', along with a question Q, the goal is
to generate a sequence of operations G = {wg,wy,...,w,}
that can be executed to produce the correct answer A.

The program G is then executed to obtain the answer A.
This can be expressed as:

P(A|T,E,Q)=Y P(G;|T.E,Q)

where {G;} represents all the correct programs that can
yield the answer. The generation of G involves selecting
each token w; in the sequence based on the previous tokens
and the given inputs. This process is modeled as:

n
P(Gt ‘ T7E7Q) :HP(Wf | W07'~'7Wt71>T7E7Q)
t=0

Each step w; is chosen to maximize the conditional proba-
bility given the context up to step # — 1.

The programs generated by the FinQANet’s program
generator utilize a Domain Specific Language (DSL) com-
prising various mathematical and table operations. In our
work, we use the same DSL as defined in [5].

B.  Evaluation Metrics

To evaluate the performance of the program generator,
we use two primary metrics:

Execution Accuracy: This measures the accuracy of
the final results obtained by executing the generated pro-
grams.

Program Accuracy: This evaluates the correctness of
the generated programs by comparing them to the anno-
tated gold programs. Two programs are considered equiv-
alent if they perform the same operations in a mathemati-
cally equivalent manner.

Execution accuracy can sometimes result in correct
answers despite incorrect formulas due to coincidental
matches. Since our goal is to measure the model’s numer-
ical reasoning abilities, we use Program Accuracy as the
evaluation metric, which requires the entire correct answer
program to be matched for it to be considered correct.

IV. NUMERICAL REASONING UTILIZING
PRIMITIVE DESCRIPTION (NRPD)

We propose the NRPD framework, which aims to en-
hance the model’s reasoning capability by utilizing primi-
tive descriptions and self-supervised learning. The NRPD
framework generates numerical reasoning datasets with
descriptions without the need for human annotation and
employs anonymization techniques during training. This



approach enables the model to achieve more robust numer-
ical reasoning abilities. We will explain each component in
detail.

A. Description

Descriptions serve two purposes. First, they define jar-
gon, enabling the model to handle previously unseen ter-
minology encountered during training. For existing jar-
gon, they explain the arguments and operations involved.
Second, descriptions provide additional information to
help model solve numerical reasoning tasks. When a user
queries the model, it is assumed they have a basic under-
standing of the necessary computations. In this context,
a description acts as an instruction containing high-level
sketch about the answer, typically combining row headers
and operations in a table. The model is trained to generate a
comprehensive and sophisticated answer from this simple
description. An example of the description is illustrated in

Figure[l]

Concatenating Descriptions In traditional numerical
reasoning, problems were solved based on C, T given Q.
However, we expanded this approach by incorporating de-
scriptions (Des), applying T, C given Q, Des.

P(A|T,C,Q,Des) =Y P(Gi|T,C,Q,Des)

B.  Anonymization

Anonymization means replacing the tokens in the row
and column headers with arbitrary tokens. This tech-
nique aims to reduce header dependency and enhance the
model’s generalization capability. During the learning pro-
cess, the model tends to focus on memorizing specific ta-
ble headers, which prevents it from developing the abil-
ity to perform actual numerical reasoning. To avoid this,
in the training phase, we replaced the both row and col-
umn headers in the tables with arbitrary tokens from the
BERT vocabulary [7ﬂ excluding special tokens such as
[CLS], [PAD], and [UNK]. Through this approach, the
model learns not just to match based on the surface form
of the headers, but to understand which column and row
to extract the desired data from. We used same tokens to
replace headers in the questions, context, and description,
ensuring consistency.

C. Automatic Data Generation

Automatic data generation enables us to generate a nu-
merical reasoning dataset from tables without human labor,
as illustrated in Figure[2] the typical method for generating
such a dataset involves a human looking at a table, generat-
ing questions, and then manually annotating them with the

ITokens are selected from a pre-defined range (e.g., token in-
dices 2000-22000). However, during inference time, we applied
tokens ranging from 22,000 to 25,000.

appropriate answer program. Our approach eliminates the
need for human intervention by automating the data gener-
ation process.

In this process, we collect table and text context from
source data (SEC reports of S&P 500) and randomly
choose a sequence of operators and select corresponding
arguments from cell values in a table. Using these, we ex-
ecute them to derive the answer.

Subsequently, this passes through the Question Mod-
ule to generate the final data instance. The Question Mod-
ule consists of two components: NumReason-500 and
DesclJargon-500.

NumReason-500 aims to generate questions in natural
form, to enhance the dataset’s overall numerical reasoning
capabilities.

DescJargon-500 focuses on generating questions that
cannot be answered without a description, thereby prevent-
ing answer extraction solely from questions

D. Self-supervised learning

Following Section[C] we created DescJargon-500. Fur-
thermore, to ensure generality, we applied anonymization
to DescJargon-500 as described in Section [B] We con-
ducted self-supervised learning using DescJargon-500 fol-
lowing the Section

After that, it proceeds to further training on the target
domain dataset.

In the further training stage, the model assimi-
lates domain-specific knowledge, including the question-
ing style and expertise relevant to the domain, to optimize
its performance. In real-world scenarios, experts in each
domain will need to manually construct datasets to create
further training, which is a costly process. Therefore, it is
crucial that the target domain training performs effectively
with low-resource data.

In summary, SSL enhances the model’s numerical rea-
soning ability through the effective utilization of descrip-
tions, while anonymization reduces header dependency
and improves the model’s generalization performance.

Finally, further training on the target domain, which re-
quires only a small amount of training data, optimizes the
model for that specific domain.

V. EXPERIMENT

A. Dataset

Financial Table QA Dataset To benchmark our ap-
proach, we also include a subset of the FinQA[S] dataset
that requires table-only data for generating answers. From

2For instance, we crafted questions like "What is 2012
AAPL’s Q1 Formulal?” such that extracting the answer requires
understanding the description of “Formulal”, which includes
domain-specific jargon such as “tax expense”
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numerical reasoining data. This approach demonstrates effective performance while reducing the need for extensive human involve-

ment.

FinQA, we extracted 4,340 training examples, 615 dev ex-
amples, and 780 test examples, focusing on table-only ex-
amples where descriptions can be generated automatically.

Domain shift Dataset To evaluate the model’s cross-
domain performance, we constsructed domain shift
datasets. These datasets modify the table headers from the
extracted FinQA dataset, replacing them with terms spe-
cific to various expert domains. In this process, it is nec-
essary to also replace the table headers that appear in the
context or questions. Therefore, domain shift is only possi-
ble for data samples where table headers are present in the
question or context. Based on this criterion, we constructed
two versions of domain shift datasets: one for the Mechan-
ical domain and one for the Biology domain, each consist-
ing of 3,944 training samples, 550 development samples,
and 716 test samples from the FinQA dataset. For consis-
tent comparison, the original FinQA data, derived from the
same source as the domain shift datasets, is designated as
the Finance domain data.

Automatic Generated Datasets This dataset is con-
structed for self-supervised learning (§ [DJ). It is based
on table information (income statements, balance sheets,
cash flows) and stock prices extracted from SEC re-
ports of S&P 500 companies from 1983 to 2023ﬂ The
DescJargon-500 dataset consists of 74,480 training sam-
ples, 14,896 development samples, and 7,448 test samples.
The NumReason-500 dataset comprises 70,000 training
samples, 20,000 development samples, and 10,000 test
samples.

B.  Experimental Models

To verify the effectiveness of our NRPD framework, we
applied the model architecture of FinQANet [5] directly.
All hyperparameters, including learning rate, batch size,
and optimizer settings, were kept identical to those used in
the original FinQANet experiments to ensure a fair com-
parison. Additionally, we used the same retriever results

3SEC reports of S&P 500.

and trained only the program generator to compare reason-
ing abilities.

We utilized the RoBERTa-laIge[7 and conducted ex-
periments in the same environment as the baseline, using a
batch size of 16. The model was trained on the automatic
generated data for 5 epochs and on the further train data
for 100 epochs.

VI. EXPERIMENT RESULT

A.  Domain Shift Performance

TableBlillustrates the variations in in-domain and cross-
domain performance based on self-supervised learning
and description conditions. The SSL was trained on the
DescJargon-500 dataset with anonymization applied. The
results of experiments where anonymization was not ap-
plied during the SSL process are detailed in Appendix C.
This experiment includes datasets that each represent a dif-
ferent domain. The anonymized test set removes the influ-
ence of specific words, allowing us to evaluate the pure
numerical reasoning ability of the model. Additionally, as
highlighted in the further training stage, the further train
set must perform well with limited data. To achieve this,
we sampled 10% of the training set for each domain to
construct the further training set. The models were trained
on these further train sets, and their performance was eval-
uated on the corresponding test sets for each domain. The
bottom of the table presents a comparison of results ob-
tained by training with 100% of the FinQA further train
set. The Baseline refers to the existing FinQANet model
trained with the original FinQA dataset.

Baseline Performance When the baseline model is
trained using 10% of the FinQA dataset, it achieves an
average performance of 27.10. While the in-domain per-
formance on the same FinQA domain is 36.73, the cross-
domain performance on other expert domains drops by
nearly 10%. Notably, on the anonymized test set, the per-
formance further declines to 19.27, almost half of the in-
domain performance. This trend is maintained, albeit to

“4we use huggingface transformers library roberta-large
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Train domain Test domain
Methods (Sample size) | (Target domain) | Avg. | Finance Mechanical Biology Anonymized
Finance 27.10 36.73 27.10 25.28 19.27
Baseline (10%) Mechanical 27.90 28.77 31.15 29.19 22.49
Biology 27.69 29.75 29.61 31.29 20.11
Finance 28.35 38.69 27.09 25.70 21.93
NRPD w/o Des (10%) Mechanical 33.24 34.36 36.31 33.24 29.05
Biology 31.60 30.31 32.54 34.08 29.47
Finance 43.01 50.00 44.27 44.27 33.52
NRPD w/o SSL (10%) Mechanical 47.19 48.32 52.01 49.58 38.83
Biology 40.71 38.82 43.71 44.41 35.89
Finance 64.59 66.20 67.18 63.27 61.73
NRPD (10%) Mechanical 64.28 64.94 67.45 62.01 62.71
Biology 63.79 63.69 64.25 64.52 62.70
Baseline (100%) Finance 54.61 63.83 51.68 55.73 47.21
NRPD (100%) Finance 75.98 79.61 77.37 73.32 73.60

Table 3. Prformance comparison across different train domains and training methods. The table includes results for baseline models
and NRPD models with and without SSL and descriptions, evaluated on Finance, Mechanical, Biology, and Anonymized test sets. The
underline indicates that the train domain and test domain are the same, representing an in-domain.

varying degrees, when the model is trained on other expert
domains. These results indicate that the baseline approach
lacks sufficient generalization ability.

Baseline with SSL (NRPD w/o Des) After training
with SSL and then fine-tuning without description, the
model showed in-domain performance gains of 1.96%p in
Finance, 5.16%p in Mechanical, and 2.79%p in Biology
over the baseline. For the anonymized test set, performance
improvements of 2.66%p, 6.56%p, and 9.36%p in each
domain over the baseline indicated that the anonymiza-
tion applied during the SSL process improved general-
ization. However, the cross-domain performance improve-
ments over the baseline were not significant when tested on
other expert domains, suggesting that fine-tuning for spe-
cific expert domains may cause the model to lose general-
ization capabilities faster across different expert domains.

Baseline with Description (NRPD w/o SSL) When
trained on the train domain with descriptions but with-
out SSL, there were noticeable performance improve-
ments compared to the baseline. In the Mechanical do-
main, the average performance improvement was close
to 20%p, while in the Biology domain, the improve-
ment was approximately 13%p. This difference is likely
due to the complexity of domain header. The Biology
domain includes relatively difficult terms like “erythro-
poiesis” whereas the Mechanical domain includes simpler
terms like “bolt”. These results indicate that, despite the
use of descriptions, there remains a dependency on specific
terms.

NRPD Framework Performance Using our NRPD
framework, both in-domain and cross-domain performance
significantly improved compared to the baseline. In the Fi-
nance domain, the in-domain performance increased by
29.47%p, reaching 66.20%, which is higher than the base-
line trained on 100% of the data. Additionally, the differ-

Test
Train Original Anonymized
Original 98.2 68.2
Anonymized 97.2 97.1

Table 4. Performance of the DescJargon-500 dataset under dif-
ferent anonymization conditions.

ence between anonymized test performance and in-domain
performance was within 5%p across all domains. This
demonstrates that NRPD not only substantially enhances
in-domain performance but also improves cross-domain
performance, significantly boosting the model’s general-
ization capabilities.

NRPD Framework Compared to Baseline on Full
Training Dataset Comparing NRPD to the baseline,
In-domain performance increases by 15.78%p, reaching
79.61. Given that the performance of experts was 87.49
and non-experts was 48.17 [5], NRPD significantly nar-
rows the performance gap between these groups. Addition-
ally, cross-domain performance sees a substantial improve-
ment, with a 26.39 increase on an anonymized test that
measures numerical reasoning skills. This demonstrates
that NRPD can effectively enhance the model’s numerical
reasoning capabilities and improve its generalization abil-

1ty.

B.  Effectivness of Anonymization

Experiments on the DescJargon-500 dataset were con-
ducted under different anonymization conditions

Impact of Header Dependency When the model was
trained without any anonymization and tested on the same
condition, it achieved a high accuracy of 98.2. However,
when anonymization was applied during testing, the per-
formance significantly dropped to 68.2. This indicates a
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Fig. 3. Comparison of model performance trained with varying sizes of the FinQA training data and evaluated on both the original
and anonymized FinQA test sets. The figure shows performance with and without self-supervised learning (SSL), with the dashed line
indicating FinQANet baseline performance. Models with SSL consistently outperform those without SSL, especially with limited data,

highlighting SSL’s effectiveness.

strong dependency on the specific table headers encoun-
tered during training, even in settings where descriptions
were provided.

Robustness through Anonymization Models trained
with anonymization and provided description showed ro-
bust performance across various test settings, maintaining
accuracies between 96 and 97.2. This indicates that train-
ing with anonymized headers helps the model to generalize
better and reduce dependency on specific headers, thereby
enhancing its ability to perform numerical reasoning tasks
more robustly.

Overall, these results underscore the importance of re-
ducing header dependency through anonymization tech-
niques and highlight the potential of using descriptions to
improve the model’s performance in financial document
QA tasks.

C. Performance variation with further-train data size

Figure[3|compares the performance of the model trained
with varying sizes of the original FinQA training data (to-
tal of 4340 examples) and evaluated on both the original
FinQA test set and the anonymized FinQA test set. This
comparison aims to assess the impact of different sizes of
further training data on the model’s performance, specifi-
cally focusing on the effect of self-supervised learning.

Effectiveness of SSL on low-resources The model
trained with SSL consistently outperforms the model with-
out SSL across all sample sizes. This performance dif-
ference becomes particularly pronounced in low-resource
scenarios. For instance, with the SIPP configurations, the
impact of SSL is dramatic, resulting in significantly higher
program accuracy compared to models without SSL. Given
the high cost and effort required to construct thousands of
expert-domain datasets in real-world applications, achiev-
ing reasonable performance with low-resource environ-
ment is notably impressive. This highlights the critical
role of SSL in enhancing model performance when data
is scarce, making it a valuable approach for practical ap-

plications.

Generalization Impact of the NRPD Framework
When evaluated on an anonymized test set, the base-
line model’s performance drops sharply. However, NRPD
demonstrate relative robustness to the anonymized test set.
Notably, the SIPP configuration performs close to the base-
line even when constructed with only one type of correct
answer program. Furthermore, when using 5% of the data,
the performance significantly surpasses the baseline. This
robustness suggests that NRPD helps the model to general-
ize better by focusing on the reasoning process rather than
memorizing specific headers.

VII. CONCLUSION

Our study tackles two main challenges in numerical rea-
soning within expert domains: the need for skilled human
experts to label the data and the lack of generalization ca-
pability due to dependencies in specific table header and
domain-specific jargons.

We introduced the NRPD framework to address these is-
sues. By incorporating high-level sketch from query posers
and utilizing Self-Supervised Learning (SSL), the model
effectively learns numerical reasoning in an unbiased envi-
ronment. Anonymization during training helps the model
focus on reasoning abilities rather than dependencies.

The NRPD framework improves model transferability,
enabling strong performance even with minimal target do-
main data. Additionally, it enhances non-experts’ ability to
process specialized documents, reducing associated costs.
Overall, NRPD mitigates dependency issues, boosts model
generalization, and lowers practical costs in expert-domain
document processing.

VIII. LIMITATIONS AND FUTURE WORK

Despite the contributions of our research, there are sev-
eral limitations that need to be addressed. First, our method




requires additional information in the form of descriptions
from humans, which introduces a dependency on human
input. To mitigate this, future work should focus on gen-
erating descriptions using large language models (LLMs)
instead of relying on human input.

Moreover, our use of self-supervised learning primarily
aimed at enhancing the model’s ability to utilize descrip-
tions. However, the self-supervised learning technique we
proposed is highly flexible and can be applied to any ta-
ble data. Future research should explore extending and ap-
plying this method in different contexts to fully leverage
its potential. These future directions aim to overcome the
current limitations and further improve the efficiency and
applicability of our framework.
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SUMMARY OF THIS PAPER

A. Problem Setup

This paper addresses the challenge of performing effective question answering (QA) on numerical tabular data
in expert domain documents. Traditional fine-tuning approaches often lead to models that depend on specific
table headers and jargon, resulting in poor generalization across different domains. To overcome this, we pro-
pose the Numerical Reasoning utilizing Primitive Description (NRPD) framework, which enhances the gen-
eralization capability of models for numerical reasoning tasks by mitigating header dependency and utilizing
self-supervised learning (SSL).

B.  Novelty

The NRPD framework introduces several novel components. First, it incorporates anonymization by replacing
tokens in row and column headers with arbitrary tokens during training. This reduces dependency on specific
headers and improves generalization. Second, it uses self-supervised learning (SSL) to generate diverse numer-
ical reasoning data without human labor and applies anonymization to prevent models from forming spurious
dependencies on headers and jargon. Third, it employs high-level descriptions to define jargon and provide
additional information, thereby enhancing the model’s ability to handle novel tables and operations.

C. Algorithms

the NRPD framework employs anonymization during training. By replacing tokens in row and column headers
with arbitrary tokens, the model is prevented from memorizing specific headers, thus focusing on understanding
the underlying structure and relationships within the table data. This reduces header dependency and ensures
that the model learns true numerical reasoning skills.

In addition, the NRPD framework leverages automatic data generation to create numerical reasoning datasets
without the need for human annotation. This process involves collecting table and text contexts from source data,
selecting sequences of operators and corresponding arguments from table cell values, and deriving answers.

The final component of the NRPD framework is self-supervised learning (SSL), which utilizes the dataset with
applied anonymization to train the model under unbiased conditions. This is followed by further training on
the target domain dataset, allowing the model to assimilate domain-specific knowledge, including questioning
styles and expertise relevant to the domain. This process optimizes the model’s performance, even with limited
training data, ensuring robust numerical reasoning and improved cross-domain generalization.

D. Experiments

The experiments demonstrate the effectiveness of the NRPD framework in improving both in-domain and cross-
domain performance. The baseline model trained on 10% of the FinQA dataset achieved an average performance
of 27.10, with significant drops in cross-domain performance and on anonymized test sets, indicating poor gen-
eralization. Using descriptions without SSL (NRPD w/o SSL) led to noticeable performance gains, although
dependency on specific terms persisted. Combining descriptions and SSL in the full NRPD framework resulted
in substantial improvements. In the Finance domain, in-domain performance increased by 29.47 percentage
points, outperforming the baseline trained on the full dataset. The framework also maintained robust perfor-
mance across anonymized tests, showing enhanced generalization. Models trained with anonymization main-
tained high accuracy across various test settings, reducing header dependency and improving generalization.
Additionally, SSL significantly boosted performance, especially in low-resource environments, highlighting its
critical role in practical applications.
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